The study of the proton diffusion process in the porous MnO2 electrode
نویسنده
چکیده
The proton diffusion coefficients in an electrolytic manganese dioxide (EMD) electrode at various stages of the constant current discharge have been determined by means of AC impedance technique. The finite diffusion model was applied in the numerical fitting. The crystallite size of EMD was estimated from (1 1 0), (1 2 1) and (0 2 1) diffraction peaks with both Scherrer equation and Warren–Averbach theory. X-ray diffraction (XRD) peak broadening caused by instrument, crystallite size and microstrain was separated. The crystallite size of ramsdellite was assumed to be the proton diffusion length. © 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Impact of anisotropy level of gas diffusion layer on the temperature distribution of a PEM fuel cell cathode electrode
Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side whe...
متن کاملCost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملNumerical Investigation of the Effect of Gas Diffusion Layer with Semicircular Prominences on Polymer Exchange Membrane Fuel Cell Performance and Species Distribution
A three-dimensional computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both gas distribution flow channels and Membrane Electrode Assembly (MEA) is developed. A set of conservation equation is numerically solved by developing a CFD code based on the finite volume technique and SIMPLE algorithm. In this research, some parameters like oxygen consumption, water...
متن کاملHierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors.
We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm(-2), the Ni@MnO2 electrode demonstrated a spec...
متن کاملHydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors
MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous...
متن کامل